
Redbooks Paper

Linux on IBM zSeries and S/390:

Virtual Router Redundancy Protocol on
VM Guest LANs

Overview
This Redpaper describes the Virtual Router Redundancy Protocol (VRRP) and its use in a
Linux VM Guest LAN environment. The following topics are covered:

� About VRRP

� Linux VRRP implementations

� Building and installing keepalived

� VRRP on Guest LANs using keepalived

� VRRP details

About VRRP
When building networks, one of the ways to increase availability is to provide redundancy for
critical components. This usually involves duplicating routers, switches and links to ensure
continuity of service across failures. Dynamic routing protocols are used to keep the network
running, routing traffic around network problems.

One place where it can be difficult to provide this level of redundancy is at the endpoints of the
network. There are two main reasons for this:

� It is often impractical to provide multiple network connections for end-stations (particularly
desktop workstations) due to prohibitive cost and duplication of horizontal cabling.

� Running dynamic routing protocols on end-stations, to allow them to take advantage of
multiple network paths and/or multiple gateways, is not feasible due to the network
overhead and resulting complexity of the routing environment.

Vic Cross
© Copyright IBM Corp. 2003. All rights reserved. ibm.com/redbooks 1

The Virtual Router Redundancy Protocol (VRRP) is an Internet standard described in
RFC2338. It gives network designers a way to provide reliable, redundant gateway service for
IP end-stations.

VRRP introduces the concept of a “virtual router” that is addressed by IP clients requiring
gateway service. The actual routing service is provided by physical routers running the VRRP
protocol. An example of this is shown in Figure 1.

Figure 1 VRRP concepts

This illustration shows a number of VRRP concepts.

� Router rA is the master of virtual router VRID 1, and the backup for VRID 3. At this time, it
handles the routing of packets addressed to the VIP for VRID1, and is ready to take on the
routing role for VRID 3.

� Router rB is the master of virtual router VRID 3, and the backup for VRID 1. At this time, it
handles the routing of packets addressed to the VIP for VRID3, and is ready to take on the
routing role for VRID 1.

� Router rC does not have VRRP function, but uses the VIP for VRID 3 to reach the Client
LAN subnet.

� Router rD is the master of VRID 2. Router rF is the master of VRID 5. Router rE is the
backup for both of these VRIDs. If rD or rF fails, rE will become the master for that VRID. In
fact, both rD and rF could fail at the same time; the fact that a VRRP router is a master for
one VRID does not preclude it from being master for another.

� Router rG is the WAN gateway for the Backbone LAN. All of the routers attached to the
backbone are sharing routing information with the routers on the WAN using a dynamic
routing protocol such as OSPF. VRRP is not involved in this, although Router rC will
advertise that the path to the Client LAN subnet is via the VIP of VRID 3.

Virtual Router
VRID 10

Virtual Router
VRID 11

Virtual Router
VRID 2

Virtual Router
VRID 3

Virtual Router
VRID 1

Virtual Router
VRID 5Master Backup

Master Backup Backup Master

Client
LAN

Server
LANs

MasterBackup

rA

rB

rC

rD rE rF

rG rH rJ

Master Backup

MasterBackup

WAN

Backbone
LAN
2 Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs

� Router rH is the master of VRID 10, and backup for VRID 11. Likewise, router rJ is the
master for VRID 11 and the backup for VRID 10. This is a VRRP load-sharing
configuration, and it illustrates that multiple VRIDs can exist on a single router interface.

VRRP can be used as part of a network design that provides almost total routing redundancy
for all systems in the network.

VRRP terminology
A number of descriptive terms are introduced by VRRP:

Virtual Router A single router image created through the operation of one or more
routers running VRRP.

VRRP Instance A program, implementing VRRP, running on a router. A single VRRP
instance can provide VRRP capability for more than one virtual router.

Virtual Router ID Also called VRID, this is a numerical identification of a particular virtual
router. VRIDs must be unique on a given network segment.

Virtual Router IP An IP address associated with a VRID that other hosts can use to
obtain network service from. The VRIP is managed by the VRRP
instances belonging to a VRID.

Virtual MAC address For media that use MAC addressing (such as Ethernet), VRRP
instances use a predefined MAC address for all VRRP actions instead
of the real adapter MAC address(es). This isolates the operation of the
virtual router from the real router providing the routing function. The
VMAC is derived from the VRID.

Master The one VRRP instance that performs the routing function for the
virtual router at a given time. Only one master is active at a time for a
given VRID. Also refers to the state of the VRRP FSM when the VRRP
instance is operating as master (that is, “master state”).

Backup VRRP instances for a VRID that are active but not in the master state.
Any number of backups can exist for a VRID. Backups are ready to
take on the role of master if the current master fails. Also refers to the
state of the VRRP FSM when the VRRP instance is operating as
backup (that is, “backup state”).

Priority Different VRRP instances are assigned a priority value, as a way of
determining which router will take on the role of master if the current
master fails. Priority is a number from 1 to 254 (0 and 255 are
reserved). The larger the number, the higher the priority.

Owner If the virtual IP address is the same as any of the IP addresses
configured on an interface of a router, that router is the owner of the
virtual IP address. The priority of the VRRP instance when it is the VIP
owner is 255, the highest (and reserved) value.

Note: In this paper, we use the term VRIP to refer to the IP address managed by the
VRRP virtual router. Other VRRP documentation may use the term “virtual IP address”,
but we will not use that here because of possible confusion with the VIPA function
provided by z/OS™ and z/VM™ TCP/IP stacks. VIPA is not related to VRRP in any
way.
Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs 3

VRRP in action
Let’s analyze a simple scenario describing how VRRP operates. In this example, we will
illustrate how VRRP operates on Ethernet.

Figure 2 shows a simple VRRP configuration, with two routers connecting to a network cloud.
We will use VRRP to provide a resilient routing function for the client machines in the LAN.

Figure 2 Simple VRRP example

When a VRRP instance is in the master state for a VRID, it sends multicast packets to the
registered VRRP multicast address advising other VRRP instances that it is the master for
the VRID. This serves two purposes:

� If a VRRP instance with a higher priority for that VRID is started (for example the VIP
owner), the new VRRP instance can force an election and take on the master role.

� VRRP instances in the backup state for the VRID listen for the master’s packets; if an
interval elapses without a packet being received, the instances in the backup state take
action to elect a new master (since in all likelihood the master has failed).

In Figure 2, Router rA is the current Master for VRID 1. This means that one of the following
must be true about Router rA:

� It is a higher priority than Router rB.

� It is the VIP owner (which mandates a priority of 255.;

� If both routers have the same priority, its interface IP address is higher than that of
Router rB.

For our example, we have configured Router rA’s priority to be 250 and Router rB’s priority to
be 10. If we did not set the priority on the routers (the default priority is 100), router rB would

VRID 1
Virtual IP: 192.168.42.1Master Backup

rA rB

Router rA VRID 1:
Priority:250

Ethernet IP address:
192.168.42.2

Router rB VRID 1:
Priority:10
Ethernet IP address:
192.168.42.3

Ethernet
4 Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs

have become the master because the IP address of its Ethernet interface higher than that of
router rA.

Router failure
If Router rA suffered a failure, after a short interval Router rB would notice that no multicast
packet had been received. It would then transition to the master state, taking over the
handling of the VIP and sending its own multicast packets.

The length of time that Router rB waits before making its state transition is called the master
down interval. It is based on the length of time between master updates (called the
advertisement interval) and a value called skew time which is calculated from the priority
value. Those curious about this kind of detail can find more information in “VRRP timing” on
page 30.

Router restart
When the problem with Router rA is resolved, and depending on its configuration, either of
two situations would occur:

� If Router rA is configured to start as Master, it will force an election immediately by sending
its first advertisement as master. Router rB will receive this advertisement and transition to
backup state.

� If Router rA is configured to start as Backup it will transition from initialization to Backup
state. Nothing will happen until it receives an advertisement from Router rB. Router rB has
a lower priority than Router rA, so Router rA will start an election by commencing its
transition to master state and sending an advertisement. When it receives this
advertisement, Router rB will transition to backup state because Router rA has higher
priority.

In both cases, Router rB signifies to Router rA that it has given up master state by sending an
advertisement with a priority value of zero (0). When Router rA receives this, it knows that rB
has deregistered the VRIP and that it can now successfully register the VRIP itself.

Note: The priority value actually has an additional use: it assists in some internal timing in
the VRRP protocol. It is a good idea for your priority values to be at extremes, as it helps
the protocol make “clean state” transitions. Refer to “Avoiding state transition race
conditions” on page 31 for more detail on this.

Note: The VRRP RFC states that a VRRP instance should only transition to master state
from startup if it is an owner. VRRP implementations can provide mechanisms to configure
the initial state, but if Master is chosen when the VRRP instance is not an owner, then the
configuration will not be operating in strict accordance with the RFC.

When planning your VRRP configuration, you know in advance which instance will be your
preferred master as it will have the highest priority. Configuring the preferred master’s
startup state allows it to transition straight to master when it is started, rather than waiting
for advertisements from other instances.

If you do configure startup state, be careful to only configure one instance as master. This
will avoid unnecessary elections when a lower priority instance starts up.
Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs 5

To find out more
See “VRRP details” on page 30 for more information about VRRP operation. For further
details about the operation of VRRP (including frame formats and other information), refer to
RFC2338 at:

http://www.faqs.org/rfcs/rfc2338.html

We also recommend the excellent book VRRP: Increasing Reliability and Failover with the
Virtual Router Redundancy Protocol.

VRRP in a Linux on zSeries™ network
When building Linux guest environments under VM, we have the same routing issues as
found in traditional server environments. It is not always desirable to have multiple network
connections to each guest, and even if multiple connections were employed it becomes
difficult to manage different paths to the network.

VRRP gives us a way to provide consistent and reliable routing service to Linux guests. By
using VRRP in our Linux router guests, we present a single router image to Linux server
guests.

Linux VRRP implementations
While VRRP is implemented in many different router products, only three known
implementations of VRRP exist for Linux.

Early VRRP implementations
The first VRRP implementations developed and available on Linux appear to have problems
on VM Guest LANs.

Jerome Etienne’s VRRPd
This is perhaps the original implementation of VRRP for Linux. It is available at

http://off.net/~jme/vrrpd/index.html

The IBM® Redbook Linux on IBM ^ zSeries and S/390: Large Scale Linux
Deployment, SG24-6824, includes a brief discussion on this VRRP implementation.

On Guest LANs, this implementation does not function correctly because most of the actual
network interface code has been hard-coded to work on Ethernet. It supports a mode that
does not try to use the VRRP virtual MAC address, but even in this mode it fails to correctly
transmit the VRRP multicast message packets. This means that the first instance that starts is
able to operate as the VRRP router, but any others that start do not receive VRRP messages
and try to transition to the master state.

Note: It is perhaps unfortunate that Linux guests performing a routing function have been
referred to as “virtual routers”, as this now creates a terminology overlap. We seem to be
encountering a number of these in our Linux on zSeries work: we cannot refer to z/VM
Guest LANs as “virtual LANs” because of IEEE 802.1q Virtual LAN technology; we
discussed VIPA in a previous section; and now this one!
6 Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs

http://off.net/~jme/vrrpd/index.html
http://www.faqs.org/rfcs/rfc2338.html
http://off.net/~jme/vrrpd/index.html

Alexandre Cassen’s VRRPd
Alexandre Cassen is a developer on the Linux Virtual Server project who took Jerome
Etienne’s VRRP code and started to develop it for use in LVS. His VRRP code is available
from:

http://linuxvirtualserver.org/~acassen/

We did not actually try this VRRP implementation, as the author has extensive warnings
about the “experimental”, “proof-of-concept” nature of the code. Also, given that it is based on
Jerome Etienne’s implementation, we imagine that it will also be heavily dependent on
Ethernet. Alexandre’s follow-up program is much more interesting.

Keepalived
Alexandre Cassen merged his VRRP code into keepalived, a program he developed to
provide heartbeat and other services to LVS. He added VRRP protocol support to keepalived
because it provides a cooperative function to the other capabilities of keepalived.

The keepalived home page is located at:

http://keepalived.sourceforge.net

The VRRP implementation in keepalived appears to be sufficiently changed from its roots that
it works without change on z/VM Guest LANs. This means that we can set up resilient routing
within our Guest LAN environment without costly processing overhead in our Penguins.

Features of keepalived
To quote from the keepalived home page:

The main goal of the keepalived project is to add a strong & robust keepalive facility to the
Linux Virtual Server project... Keepalived implements a framework based on three family
checks: Layer 3, Layer 4 & Layer 5/7... In addition keepalived implements an independent
VRRPv2 stack to handle director failover.

In an LVS environment, keepalived can be used to provide health-checking of a server pool. It
provides a way to keep the directors’ LVS topology up-to-date in the event of a server failure.
Those interested in the LVS application of keepalived should refer to the project home page
for more information.

As stated earlier, the implementation of VRRP in keepalived is sufficiently hardware-neutral
that it worked without modification on VM Guest LANs. We tested it on both QDIO and
HiperSockets Guest LANs, under z/VM 4.3.

Building and installing keepalived
We now describe the process of building and installing keepalived for Linux on zSeries and
S/390®.

Note: For those who may be wondering, the VM APAR that provides MAC address
capability in support of DHCP (described in Linux on IBM ^ zSeries and S/390:
TCP/IP Broadcast on z/VM Guest LAN, REDP3596) was not applied to this z/VM system
to make keepalived work. VRRP as implemented by keepalived does not depend on MAC
addresses. Refer to “Virtual MAC address” on page 24 for more discussion on this.
Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs 7

http://linuxvirtualserver.org/~acassen/
http://keepalived.sourceforge.net
http://keepalived.sourceforge.net
http://linuxvirtualserver.org/~acassen/

Dependencies
It is important to note that the VRRP protocol depends on multicast, so it will only work over
network media that support multicast. In our case, this includes both QDIO and HiperSockets
Guest LANs at z/VM Version 4 Release 3.

The README file for keepalived states that it is dependent on OpenSSL and popt.

OpenSSL
OpenSSL should be already available on your system if you have programs such as sshd
installed. When building on SuSE SLES 7, however, compilation fails because of libraries that
are missing from the distributed OpenSSL code.

To resolve this, edit the makefiles in the genhash, keepalived/core, and keepalived/vrrp
directories to add defines for NO_RC5 and NO_IDEA. These defines will prevent the make
process from trying to include the OpenSSL code that is not provided.

popt
The popt library provides routines to parse command line arguments. Check that popt has
been installed before attempting to build keepalived.

ETHTOOL_GLINK
Part of the VRRP code in keepalived depends on an ETHTOOL IOCTL that is not
implemented consistently in the Linux kernels on zSeries and S/390.

On a system using a stock 2.4.19 kernel (with s390 patches, of course), the keepalived code
compiles cleanly and works well but experiences a startup delay problem. On systems from
Red Hat (Red Hat Linux 7.2) and SuSE (SLES 7.0), using the vendors’ supplied kernels,
compilation errors occur because the definition of the required IOCTL, ETHTOOL_GLINK, is
missing from kernel-space ethtool.

Keepalived, as supplied, tests to see if the system is using a 2.4 kernel before including the
code that uses ETHTOOL_GLINK. This assumes that all 2.4 kernels provide this IOCTL,
which we have found not to be the case.

The patch shown in Example 1 on page 9 includes the ETHTOOL_GLINK code only if
ETHTOOL_GLINK is actually defined. This allows keepalived to build correctly on stock
kernels.

Note: Thanks to Adam Thornton (via the Linux-390 mailing list) for this workaround.

Tip: Any RPM-based Linux distribution should have popt available, as RPM itself is
dependent upon it.

Important: The “ethtool” code in the Linux kernel must not be confused with the ethtool
user-space program. Kernel-space ethtool provides IOCTL support for certain adapter
functions (such as controlling full- or half-duplex communication) that can be controlled by
applications such as user-space ethtool.
8 Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs

Example 1 Patch to keepalived for Linux/390 compatibility

diff -auNr keepalived-1.0.2.orig/keepalived/vrrp/vrrp_if.c keepalived-1.0.2/keepalived/vrrp/vrrp_if.c
--- keepalived-1.0.2.orig/keepalived/vrrp/vrrp_if.c Mon Apr 14 10:29:00 2003
+++ keepalived-1.0.2/keepalived/vrrp/vrrp_if.c Tue May 20 10:38:39 2003
@@ -183,7 +183,7 @@
 static int
 if_ethtool_status(const int fd)
 {
-#ifdef _KRNL_2_4_
+#ifdef ETHTOOL_GLINK
 struct ethtool_value edata;
 int err = 0;

Testing
While we have done basic testing to ensure that keepalived works as expected after these
modifications are applied, we have not tested it exhaustively. Make sure you test keepalived to
your satisfaction prior to relying on it in a production environment.

Updates
As always, staying in touch with the community on the LINUX-390 mailing list is a good way to
keep up to date with developments and changes.

We will also be providing the information discussed here to the keepalived developers.
Hopefully this will result in the modifications we require for Linux/390 and Guest LANs being
incorporated into the keepalived source.

Building keepalived
Keepalived is available from the project home page. It can be downloaded in either SRPM
(source RPM) format or tarball. A link is also provided to the Debian packages repository,
although this seems to link only to packages for x86 systems.

Review the SuSE SLES 7 OpenSSL issue and the Linux/390 compatibility patch discussed in
“Dependencies” on page 8 before building keepalived. If you are using a kernel from your
Linux distributor (the kernels packaged with Red Hat 7.2 or SuSE SLES 7), you will need to
make the changes discussed there prior to building the keepalived code.

Source tarball
To build keepalived from the source tarball, download the file from the project home page.
Extract the tarball into an appropriate location using the following command:

tar -zxf keepalived-1.0.1.tar.gz

This creates the directory keepalived-1.0.1 containing all the product files. Change into this
directory, then issue the following commands:

./configure
make
make install

This will build and install keepalived on your system.

Note: Thanks to Sebastian Korte (via the Linux-390 list) for alerting us to this issue.

Important: At the time of writing, the current keepalived version is 1.0.3. We did most of
our testing with version 1.0.1, and filenames in the following examples reflect this.
Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs 9

Source RPM
Depending on your software maintenance practices, it may be preferable to build an RPM
package from the source RPM and install that. To build keepalived from the source RPM,
download the source RPM from the keepalived home page and install it with the following
command:

rpm -ivh keepalived-1.0.1-1.src.rpm

This puts the files that make up the keepalived package (in this case, just the source tarball)
into the /usr/src/redhat/SOURCES directory. The SPEC file for the package, keepalived.spec,
will be found in /usr/src/redhat/SPECS. This file specifies: how the package will be created;
defaults for where the resulting product will be installed; and where configuration files will be
written. Usually this file will not need to be edited, but it is always good to check.

Once you are happy with the SPEC file, build the keepalived RPM by issuing the following
command:

rpmbuild -bb /usr/src/redhat/SPECS/keepalived.spec

Once the package is built, you can install it with this command:

rpm -ivh /usr/src/redhat/RPMS/s390/keepalived-1.0.1-1.s390.rpm

Running keepalived
Once keepalived is installed on your system, you will have to configure it. You will also need to
make sure that keepalived is added to your system startup.

Command line
The keepalived program takes a number of options on the command line. The ones relevant
to general operation or VRRP function are listed in Table 1 on page 11.

Important: We found that there was a minor bug in the installation script. The sample
keepalived configuration file is supposed to be written to /etc/keepalived/keepalived.conf,
but the script applies the base directory prefix to this—resulting in the file going to
/usr/local/etc/keepalived/keepalived.conf.

To avoid this, you may wish to either alter the Makefile for the program, or manually
relocate the /usr/local/etc/keepalived directory after installation.

Note: The main thing you might want to check or change is the location of the files
installed. The keepalived.spec file that came with our source package uses the %{_bindir}
and %{_sbindir} macros for the resulting binary files, meaning that the executables will go
into /bin and /sbin directories.

You may also need to include modifications discussed in “Dependencies” on page 8. By
including the patch in the SPEC file (you would need to write a suitable patch to the
makefiles to resolve the SuSE SLES 7 OpenSSL issue), RPM will automatically apply the
patch when it builds the binary package. RPM documentation can help you make the
required changes.
10 Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs

Table 1 Keepalived command line options

Configuration
Keepalived uses a single configuration file, keepalived.conf, by default located in
/etc/keepalived. A sample configuration, which could be used for Router rA in Figure 2 on
page 4, appears in Example 2.

Example 2 keepalived.conf

vrrp_instance GLAN-1 {
 state MASTER
 interface eth0
 virtual_router_id 1
 priority 250
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1234
 }
 virtual_ipaddress {
 192.168.42.1/24
 }
}

Following are the key parameters in the configuration:

vrrp_instance GLAN-1 Defines a new instance of VRRP.

state MASTER This VRRP instance will attempt to start in master state.

interface eth0 This VRRP instance operates on the eth0 interface.

virtual_router_id 1 The VRID this VRRP instance belongs to.

priority 250 The priority of this VRRP router in this virtual router.

advert_int 1 VRRP advertisements will occur every second (the default).

authentication Defines the type of authentication that will be used for advertisements
on this VRID. auth_type can be either PASS for password
authentication, or AH for IP Authentication Header method. auth_pass
specifies the password that will be used.

virtual_ipaddress The list of VIPs that are managed by this VRID.

Startup
Whether you have installed keepalived from source tarball or RPM, you will need to make
sure that it is started during system initialization. All the currently available Linux on zSeries

Option Function

-V Leave VRRP VRIPs registered when keepalived terminates

-n Run keepalived in the foreground (don’t fork)

-f filename Path to the configuration file (instead of default)

-h Display usage information

-l Log messages to local console (syslog)

-v Display version information
Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs 11

distributions use SysV-style init scripts, so we recommend using this method. Use the
following example to create an init script for keepalived.

Example 3 keepalived init script

#!/bin/bash
#
chkconfig: 2345 19 81
description: A status monitor and VRRP daemon
#
processname: keepalived
config: /etc/keepalived/keepalived.conf

source function library
. /etc/rc.d/init.d/functions

Get network config
. /etc/sysconfig/network

Check that networking is up.
["${NETWORKING}" = "no"] && exit 0

The process must be configured first.
[-f /etc/keepalived/keepalived.conf] || exit 0

RETVAL=0

prog="keepalived"

case "$1" in
 start)
 echo -n $"Starting $prog: "
 daemon /usr/sbin/keepalived -l -f /etc/keepalived/keepalived.conf
 RETVAL=$?
 [$RETVAL -eq 0] && touch /var/lock/subsys/keepalived
 echo
 ;;
 stop)
 echo -n $"Shutting down $prog: "
 killproc keepalived
 RETVAL=$?
 [$RETVAL -eq 0] && rm -f /var/lock/subsys/keepalived
 echo
 ;;
 restart|reload)
 $0 stop
 $0 start
 RETVAL=$?
 ;;
 condrestart)
 if [-f /var/lock/subsys/keepalived]; then
 $0 stop
 $0 start
 fi
 RETVAL=$?
 ;;
 status)
 status keepalived
 RETVAL=$?
 ;;
 *)
12 Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs

 echo $"Usage: $0 {start|stop|restart|reload|condrestart|status}"
 exit 1
esac

exit $RETVAL

Once you have written the init script for keepalived, perform the necessary operations that will
ensure the script is invoked at startup and shutdown. For example, on a Red Hat system the
following command would accomplish this:

chkconfig keepalived on

Alternatively, a utility such as ntsysv can be used to ensure that keepalived is started as
required.

VRRP on Guest LANs using keepalived
In this section, we describe a number of ways that VRRP can be used to support IP routing in
a Penguin Colony. We will start by converting the example in Figure 2 on page 4 to one that
illustrates networking in a z/VM Linux environment, then employ VRRP and other techniques
to improve the quality of IP routing service.

Important: This example script is based on a script supplied with a Red Hat distribution.
SuSE has slightly different conventions for some parts of their scripts, so SuSE users
should treat this as a guide only.

Also, a sample script is provided in the keepalived source package. It is contained in the
etc/init.d directory of the keepalived source tree, in the file keepalived.init.
Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs 13

Simple environment without VRRP
First, let’s examine a basic network configuration with hardware redundancy, as shown in
Figure 3.

Figure 3 Linux routing configuration before VRRP

In this configuration, we have used some kind of dynamic routing protocol (OSPF, RIP, and so
on) to provide routing redundancy into our Penguin Colony. We have not provided any way for
the Linux guests to take advantage of the dual network paths, however.

In our guests we define a default gateway, which will be either one of the two router guests. If
that router guest fails, traffic will be able to reach the Penguin Colony thanks to the dynamic
routing in the network, but responses from our Linux guests will not reach the network.

Basic VRRP configuration
If we add VRRP to the example in Figure 3, we can provide redundancy for outgoing traffic.
This is shown in Figure 4 on page 15.

z/VM

.1 .2

Guest LAN
192.168.42.0/24

sA sB sC sD

rA rB

OSA OSA

Switch Switch

.10 .11 .12 .13
14 Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs

Figure 4 Linux routing with basic VRRP

In the configuration of the Linux guests, we specify the VIP as the default gateway. Now,
VRRP will provide a continuous router service across the two routers.

Configuration
The keepalived.conf that provides this function on Router rA is shown in Example 4 on
page 16.

Attention: It is critical that the VIP is specified as the default gateway for the Linux guests,
as it should be clear that VRRP does not protect the interface addresses of the routers.
Any Linux guest that uses a router interface IP address will lose connectivity if that router
fails, regardless of whether VRRP is working.

As stated in “VRRP terminology” on page 3, an “owner” VRRP instance defines its VIP to
be the same as a router interface IP address. While it is possible to specify the default
gateway as an owner VRRP instance, we do not recommend it. Complications with VRRP
owners are discussed in “Ownership” on page 32.

z/VM

VRID 1
Virtual IP: 192.168.42.1

Master Backup

Router rA:
VRID 1: Priority: 250

Router rB:
VRID 1: Priority: 10

sA sB sC sD

rA rB

OSA OSA

Switch Switch

Guest LAN
192.168.42.0/24

.10 .11 .12 .13

.8 .9
Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs 15

Example 4 Basic keepalived.conf - Router rA

! Configuration File for keepalived

vrrp_instance G-LAN {
 state MASTER
 interface eth1
 virtual_router_id 1
 priority 250
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1234
 }
 virtual_ipaddress {
 192.168.42.1/24
 }
}

Router rB’s keepalived configuration is shown in Example 5.

Example 5 Basic keepalived.conf - Router rB

! Configuration File for keepalived

vrrp_instance G-LAN {
 state BACKUP
 interface eth1
 virtual_router_id 1
 priority 10
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1234
 }
 virtual_ipaddress {
 192.168.42.1/24
 }
}

Operation
When keepalived on router rA starts, it will attempt to transition to the master state because it
has been configured to do so. It will set the VRIP address as a secondary address on the
correct network interface, then start sending multicast advertisements to the registered VRRP
multicast address (224.0.0.18).

When router rB starts, it will transition to backup state according to its configuration. It will set
the master down interval according to the formula specified in the RFC, and wait to receive
advertisements from the master.

Under z/VM, we can issue some CP commands that show us the IP addresses registered in a
given Guest LAN. Example 6 on page 17 shows the output of the CP QUERY LAN DETAIL
command.
16 Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs

Example 6 CP QUERY LAN DETAIL

QUERY LAN DETAIL G-LAN
LAN SYSTEM G-LAN Type: QDIO Active: 6 MAXCONN: INFINITE
 PERSISTENT UNRESTRICTED MFS: 8192 ACCOUNTING: OFF
 Adapter Owner: LINUXRA NIC: 2210 Name: G-LAN
 192.168.42.8 192.168.42.1 224.0.0.1
 224.0.0.5 224.0.0.6 224.0.0.18
 Adapter Owner: LINUXRB NIC: 2210 Name: G-LAN
 192.168.42.9 224.0.0.1 224.0.0.5
 224.0.0.6 224.0.0.18
 Adapter Owner: LINUXSA NIC: 1000 Name: G-LAN
 192.168.42.10 224.0.0.1
 Adapter Owner: LINUXSB NIC: 1000 Name: G-LAN
 192.168.42.11 224.0.0.1
 Adapter Owner: LINUXSC NIC: 1000 Name: G-LAN
 192.168.42.12 224.0.0.1
 Adapter Owner: LINUXSD NIC: 1000 Name: G-LAN
 192.168.42.13 224.0.0.1
Ready; T=0.01/0.01 11:54:40

You can see that in this Guest LAN, the guest LINUXRA has registered a number of IP
addresses to the Guest LAN, including the VRRP multicast address and the VRIP.

LINUXRB has also registered the VRRP multicast address; this allows it to receive the
advertisements from the master.

Other multicast addresses appear in this list, but they are not related to VRRP:

Table 2 Multicast addresses

Load sharing with VRRP
In a given VRID, only one router can be master at one time. This means that no matter how
many routers are configured into a VRRP group, only one is handling IP traffic at a time. In the
network in Figure 4 on page 15, this means that only one of the routers, and one of the OSAs,
will carry network traffic at a time.

By configuring another VRID on the same Guest LAN, and then dividing the Linux guests
between the two, we can load balance the outgoing traffic as shown in Figure 5 on page 18.

Note: Even though it is generating advertisements rather than receiving them, the master
still needs to listen on the VRRP multicast address. Why? Because another VRRP
instance with a higher priority may start on another router, and the current master must be
able to receive the advertisements from such a router.

Address DNS name Purpose

224.0.0.1 ALL-SYSTEMS.MCAST.NET All multicast-capable systems

224.0.0.5 OSPF-ALL.MCAST.NET Systems running OSPF

224.0.0.6 OSPF-DSIG.MCAST.NET Systems providing the OSPF Designated
Router (DR) function
Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs 17

Figure 5 VRRP load balancing

If Router rA fails, there is no change to the VRID for which Router rB is the master. Router rB
will take on master state for the other VRID, becoming master for both VRIDs. All guests
continue to receive continuous routing service.

Configuration
The keepalived.conf that provides this function is shown in Example 7.

Example 7 Load sharing keepalived.conf - Router rA

! Configuration File for keepalived

vrrp_instance G-LAN-1 {
 state MASTER
 interface eth1
 virtual_router_id 1
 priority 250
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1234
 }
 virtual_ipaddress {
 192.168.42.1/24
 }
}

vrrp_instance G-LAN-2 {
 state BACKUP
 interface eth1
 virtual_router_id 2
 priority 10

z/VM

VRID 1
Virtual IP: 192.168.42.1

Master Backup

Router rA:
VRID 1: Priority 250
VRID 2: Priority 10

Router rB:
VRID 1: Priority 10
VRID 2: Priority 250

sA sB sC sD

rA rB

OSA OSA

Switch Switch

Guest LAN
192.168.42.0/24

.10 .11 .12 .13

VRID 2
Virtual IP: 192.168.42.2Backup Master

.8 .9
18 Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs

 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 4321
 }
 virtual_ipaddress {
 192.168.42.2/24
 }
}

Router rB’s keepalived configuration is shown in Example 8.

Example 8 Load sharing keepalived.conf - Router rB

! Configuration File for keepalived

vrrp_instance G-LAN-1 {
 state BACKUP
 interface eth1
 virtual_router_id 1
 priority 10
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1234
 }
 virtual_ipaddress {
 192.168.42.1/24
 }
}

vrrp_instance G-LAN-2 {
 state MASTER
 interface eth1
 virtual_router_id 2
 priority 250
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 4321
 }
 virtual_ipaddress {
 192.168.42.2/24
 }
}

Unfortunately, to take advantage of this configuration it is necessary to have a different default
gateway specified on some of your Linux guests. This could easily be done, for example by
using one VRIP for guests with an even IP address and the other VRIP for guests with odd IP
address. However, this defeats the objective of having our guests configured as similarly as
possible for cloning and other benefits.

It is probably more effective to employ this type of configuration when you have more than one
Guest LAN handled by your router guests, as shown in Figure 6 on page 20. Here, all of the
guests for a given Guest LAN are served by the one router, but the load of different LANs is
distributed across the two routers.
Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs 19

Figure 6 Load balancing multiple Guest LANs

This can be done with the configuration files changed as follows, first for Router rA (shown in
Example 9):

Example 9 Improved load sharing keepalived.conf - Router rA

! Configuration File for keepalived

vrrp_instance G-LAN-1 {
 state MASTER
 interface eth1
 virtual_router_id 1
 priority 250
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1234
 }
 virtual_ipaddress {
 192.168.42.1/24
 }
}

vrrp_instance G-LAN-2 {
 state BACKUP
 interface eth2
 virtual_router_id 2
 priority 10
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 4321

z/VM

VRID 1
Virtual IP:

192.168.42.1
Master Backup

Router rA:
VRID 1: Priority 250
VRID 2: Priority 10

Router rB:
VRID 1: Priority 10
VRID 2: Priority 250

s1A s1B s1C s1D

OSA OSA

Switch Switch

Guest LAN 2
192.168.43.0/24

.10 .11 .12 .13

VRID 2
Virtual IP:

192.168.43.1
Backup Master

s2A s2B s2C s2D

.10 .11 .12 .13

.8 .8 .9 .9

Guest LAN 1
192.168.42.0/24

rA rB
20 Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs

 }
 virtual_ipaddress {
 192.168.43.1/24
 }
}

The configuration for router rB in this scenario is shown in Example 10.

Example 10 Improved load sharing keepalived.conf - Router rB

! Configuration File for keepalived

vrrp_instance G-LAN-1 {
 state BACKUP
 interface eth1
 virtual_router_id 1
 priority 10
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1234
 }
 virtual_ipaddress {
 192.168.42.1/24
 }
}

vrrp_instance G-LAN-2 {
 state MASTER
 interface eth2
 virtual_router_id 2
 priority 250
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 4321
 }
 virtual_ipaddress {
 192.168.43.1/24
 }
}

Using VRRP instead of dynamic routing
It is possible to use VRRP to provide routing capability for traffic coming into the Penguin
Colony. This might be desirable if the use of a dynamic routing protocol is not available at your
installation.

Because of the way it defines IP addresses, keepalived can be used on OSA Express
adapters without having to use any of the “VIPA Takeover” functions provided by the QETH
driver. This means that you can configure VRRP across your OSA Express interfaces and
provide one or more VRIP addresses that your router network can use in static routes to
reach your VM-internal simulated networks.

Figure 7 on page 22 shows an example of this. In this scenario, VRIDs protect both the Guest
LAN and OSA interfaces of the two routers. The Linux guests use the internal VIP as a default
gateway, and the network routers specify the external VRIP as the router to reach the Linux
Guest LAN.
Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs 21

Figure 7 VRRP replacing dynamic routing

For many sites, this configuration may be sufficient to provide resilient routing both into and
out of the Penguin Colony, without having to run a dynamic routing protocol in the Linux
routers. It does, however, introduce some restrictions to your network configuration. It
becomes necessary to have both external interfaces (OSA ports, in the example in Figure 7)
connected to the same subnet1. Plus, if you have disaster recovery or other system
configuration procedures that involve your system moving between processors or sites, the
static route that points to your external VRIP address can cause problems.

Sync grouping
In addition, keepalived provides a feature known as “sync grouping”, that avoids the possibility
of dead routing. In Figure 8 on page 23, we have used this feature to group the interfaces
attached to the same router. If one of the interfaces in the group fails, all of the interfaces in
the group are transitioned to failure mode. This avoids the problem where a router is master
on one side, but the interface attaching it to a network on the other side is down.

1 If your network uses IEEE 802.1q Virtual LANs, you can configure around the reduction in physical redundancy this
would normally cause.

z/VM

VRID 1
Virtual IP: 192.168.42.1

Master Backup

Router rA:
VRID 1: Priority: 250

VRID 2: Priority: 10

Router rB:
VRID 1: Priority: 10
VRID 2: Priority: 250

sA sB sC sD

Guest LAN
192.168.42.0/24

.10 .11 .12 .13

VRID 2
Virtual IP: 192.168.26.1

Master Backup

OSA OSA

Switch

.8

.8 .9

.9

rA rB
22 Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs

Figure 8 Grouping interfaces

When one interface in a sync group is in the master state, all other interfaces in that sync
group will also be in master state. Likewise when one interface in the group fails, all the
interfaces in the group are regarded as having failed. If the interface eth0 on Router rA failed,
the result would appear as shown in Figure 9.

Figure 9 Interface grouping failure scenario

z/VM

VRID 1
Virtual IP: 192.168.42.1

Master

Router rA:
VRID 1: Priority: 250

VRID 2: Priority: 10
sync group:

eth0 and eth1

Router rB:
VRID 1: Priority: 10
VRID 2: Priority: 250
sync group:
eth0 and eth1

sA sC sD

Guest LAN
192.168.42.0/24

.10 .11 .12 .13

VRID 2
Virtual IP: 192.168.26.1

Master

OSA OSA

Switch

.8

.8 .9

.9

rA rB
eth0

eth1

eth0

eth1

Ethernet
192.168.26.0/24

Backup

sB

Backup

z/VM

VRID 1
Virtual IP: 192.168.42.1

Fail

Router rA:
VRID 1: Priority: 250

VRID 2: Priority: 10
sync group:

eth0 and eth1

Router rB:
VRID 1: Priority: 10
VRID 2: Priority: 250
sync group:
eth0 and eth1

sA sC sD

Guest LAN
192.168.42.0/24

.10 .11 .12 .13

VRID 2
Virtual IP: 192.168.26.1

Fail

OSA OSA

Switch

.8

.8 .9

.9

rA rB
eth0

eth1

eth0

eth1

Ethernet
192.168.26.0/24

sB

X

Master

Master

1 Interface
transitioned to
fail due to port

outage
2 Interface

transitioned to
fail by sync
grouping

3 Interfaces
transitioned to

master due to failure
of both previous

masters
Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs 23

To understand why this feature is necessary, imagine the failure shown in Figure 9 on page 23
without sync grouping. In this case, Router rA would continue to be the master for VRID 1
even though it no longer has a path to the Ethernet network. This means that the Linux guests
on the Guest LAN would no longer be able to reach the network. By forcing Router rA’s VRID
1 instance to transition out of master state, router rB becomes the master for VRID 1 and we
avoid this “routing into a dead network” situation.

VRRP experiences on Guest LANs
In the following sections, we discuss some of the experiences we have had using VRRP on
z/VM Guest LANs.

Virtual MAC address
The VRRP RFC states that proper VRRP operation on network media that use MAC
addressing (such as Ethernet) requires that the VRRP instance must not use the router’s
network interface MAC address for transmitting VRRP packets, or for responding to ARP
queries for the VRIP. Instead, a special MAC address must be used that is not related to the
hardware address, but is a specially generated address from a range defined for VRRP.

The main reason this is done is to maintain the virtual nature of the virtual router. By using a
hardware MAC address, there would be an association between the virtual router and the real
hardware that is undesirable. If a state transition took place, clients may have cached the
MAC address and be unable to reach the network, even though VRRP had done its work. By
using a virtual MAC address, it does not matter if the clients cache the address because
whichever router is the master will respond to the virtual MAC address.

In the original vrrpd, this virtual MAC address handling was done by changing the hardware
MAC address of the Ethernet interface to the VRRP MAC address. Not only did this make the
code Ethernet-dependent, but because the virtual MAC address is calculated using the VRID,
only one virtual router could be handled by vrrpd at a time. To work around this, Jerome
Etienne introduced an option to vrrpd to turn off the virtual MAC address processing. Now you
could have more than one VRID per interface—but it was no longer RFC-compliant, and
there was the possibility of additional downtime due to ARP caching in clients.

On z/VM Guest LANs, it is not possible to set the MAC address. Because of this, keepalived
must be operated in the mode that turns off support for the virtual MAC address. On Guest
LANs, though, this is not a reliability problem, because ARP processing (or its equivalent) is
handled by CP. When a VRRP state transition occurs and a new router guest registers the
VRIP, CP will ensure that from that moment on all traffic intended for that IP address will be
directed to the right guest.

Restriction: This feature exhibits an interesting failure mode, which we discuss in
““Unplugging” a simulated NIC” on page 28.

Important: VM APAR VM63172 changes the way that MAC addresses for Guest LAN
interfaces are presented to Linux. It does not, however, change ARP processing in any
way. ARP is still handled in CP by the Guest LAN code, so VRRP still functions in the
same manner whether the PTF for this APAR is applied or not.

While you do not need the PTF for APAR VM63172 on your system to run keepalived,
review the discussion in “Configuring an interface down” on page 28 for a situation where
the fix resolved a VRRP issue we encountered during testing.
24 Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs

Interaction with Zebra
At this time, we recommend a combination of VRRP for internal routing and dynamic routing
for the external network interface as the best way to provide highly redundant IP routing
service for a z/VM Linux environment. Dynamic routing can be implemented on Linux using a
number of different daemons, but one of the most popular is Zebra from the GNU Project.

We configured Zebra to use the OSPF routing protocol, and set up a test environment of
Linux router guests to verify our configuration. A diagram of the configuration appears in
Figure 10.

Figure 10 keepalived/Zebra interaction

This test was intended to show that Zebra correctly performed the Area Border Router (ABR)
function (the boundary between an OSPF stub area and the backbone area) before we
moved the testing into the real network using real hardware.

Tip: OSPF Stub Areas are ideal for the routers attaching your Penguin Colony to the rest of
the network. Instead of learning about routes all over the network, the ABR injects a default
route into the stub area, and can summarize the networks in the stub area into a single
route for the backbone area. Routing tables on both sides of the boundary are simplified.

z/VM

VRID 1
Virtual IP:

192.168.42.1
Master Backup

Router rA:
VRID 1: Priority 250
VRID 2: Priority 10

OSPF Router
eth0 in Area 192.168.0.0

(stub)

Router rB:
VRID 1: Priority 10
VRID 2: Priority 250
OSPF Router
eth0 in Area 192.168.0.0
 (stub)

s1A s1B s1C s1D

Guest LAN 2
192.168.43.0/24

.10 .11 .12 .13

VRID 2
Virtual IP:

192.168.43.1
Backup Master

s2D

.10 .11 .12 .13

.8 .8 .9 .9

Guest LAN 1
192.168.42.0/24

rA rB

s2A s2B s2C

rD

rC

Router rC:
OSPF ABR
eth0 in Area 192.168.0.0 (stub)
eth1 in Area 0

Router rD:
OSPF Router
eth0 in Area 0

eth0 eth0

eth0

eth1

eth0

Guest LAN 3
192.168.26.0/24

Guest LAN 4
10.29.33.0/24
Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs 25

We verified that connectivity was as we expected, and sure enough we were able to reach all
parts of the test setup as expected. We saw something unexpected in the route tables of the
Zebra systems, however, which is shown in Example 11.

Example 11 IP details with “erroneous” host routes

[root@rC root]# ip route list
192.168.43.1 via 192.168.26.9 dev eth0 proto zebra metric 2
192.168.42.1 via 192.168.26.8 dev eth0 proto zebra metric 2
192.168.42.0/24 via 192.168.26.8 dev eth0 proto zebra metric 2
192.168.43.0/24 via 192.168.26.8 dev eth0 proto zebra metric 2
192.168.26.0/24 dev eth0 scope link
10.29.33.0/24 dev eth1 scope link
127.0.0.0/8 dev lo scope link

The VRIP addresses were being imported into the OSPF routing domain as host routes, and
being advertised to the other OSPF routers. The guests should have been able to contact the
VRIP addresses directly via the local interfaces, but instead were being directed onto
alternate interfaces and routing to the VRIPs.

After much confusion, and several unsuccessful attempts to filter the offending host routes
from OSPF, we realized the address added by keepalived was actually an address with a host
mask (rather than an additional subnet IP address using the network mask). This caused
Zebra to import the address as a host route, instead of treating it as a secondary address.

Example 12 Address details from Router rA

[root@rA root]# ip address list
1: lo: <LOOPBACK,UP> mtu 16436 qdisc noqueue
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 brd 127.255.255.255 scope host lo
 inet6 ::1/128 scope host
2: sit0@NONE: <NOARP> mtu 1480 qdisc noop
 link/sit 0.0.0.0 brd 0.0.0.0
3: eth2: <MULTICAST,UP> mtu 1492 qdisc pfifo_fast qlen 100
 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff
 inet 192.168.43.8/24 brd 192.168.43.255 scope global eth2
 inet6 fe80::200:ff:fe00:0/10 scope link
4: eth1: <MULTICAST,UP> mtu 1492 qdisc pfifo_fast qlen 100
 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff
 inet 192.168.42.8/24 brd 192.168.42.255 scope global eth1
 inet 192.168.42.1/32 scope global eth1
 inet6 fe80::200:ff:fe00:0/10 scope link
5: eth0: <MULTICAST,UP> mtu 1492 qdisc pfifo_fast qlen 100
 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff
 inet 192.168.26.1/24 brd 192.168.26.255 scope global eth0
 inet6 fe80::200:ff:fe00:0/10 scope link

Attention: We should add at this point that the interfaces facing the Guest LANs were
defined to OSPF as passive interfaces. We do not want OSPF broadcasts going out over
our Guest LANs. This is why the mystery routes appear against the routers’ “external”
interfaces; these are the only OSPF interfaces the routers have.

Regardless, when you use OSPF in your Penguin Colony, always define the Guest LAN
interfaces as passive interfaces; OSPF then knows that the networks exist, without sending
OSPF messages into them.
26 Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs

We tried adding a subnet mask to the VRIP address definition in the keepalived.conf file, and
were immediately successful. The resulting change in Router rA’s address table is shown in
Example 13.

Example 13 Corrected address details from rA

[root@rA root]# ip address list
1: lo: <LOOPBACK,UP> mtu 16436 qdisc noqueue
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 brd 127.255.255.255 scope host lo
 inet6 ::1/128 scope host
2: sit0@NONE: <NOARP> mtu 1480 qdisc noop
 link/sit 0.0.0.0 brd 0.0.0.0
3: eth2: <MULTICAST,UP> mtu 1492 qdisc pfifo_fast qlen 100
 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff
 inet 192.168.43.8/24 brd 192.168.43.255 scope global eth2
 inet6 fe80::200:ff:fe00:0/10 scope link
4: eth1: <MULTICAST,UP> mtu 1492 qdisc pfifo_fast qlen 100
 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff
 inet 192.168.42.8/24 brd 192.168.42.255 scope global eth1
 inet 192.168.42.1/24 scope global secondary eth1
 inet6 fe80::200:ff:fe00:0/10 scope link
5: eth0: <MULTICAST,UP> mtu 1492 qdisc pfifo_fast qlen 100
 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff
 inet 192.168.26.1/24 brd 192.168.26.255 scope global eth0
 inet6 fe80::200:ff:fe00:0/10 scope link

Looking back to the route table on Router rC, we see that the host routes we saw before have
disappeared.

Example 14 Expected route table of Router rC

[root@rC root]# ip route list
192.168.42.0/24 via 192.168.26.8 dev eth0 proto zebra metric 2
192.168.43.0/24 via 192.168.26.8 dev eth0 proto zebra metric 2
192.168.26.0/24 dev eth0 scope link
10.29.33.0/24 dev eth1 scope link
127.0.0.0/8 dev lo scope link

We assumed that keepalived would pick up the subnet mask from the interface, and that we
had found a bug or incompatibility that prevented keepalived from obtaining the correct
subnet mask for Guest LAN interfaces. However, all the keepalived documentation we have
seen shows VRIP addresses with “/32” masks. So it seems as though keepalived is “working
as designed”, behaving no differently on Guest LAN than it does on other media.

Note: All of the example keepalived configurations shown in this paper include the subnet
mask specification. Having the addresses default to host masks does not seem to affect
the operation of keepalived or the VRRP protocol, and neither does changing them to
subnet masks. It is worth noting that the RFC is not clear on whether a host or subnet
mask should be used for VRIP addresses.

We will leave it up to you to decide how you define your addresses, but recommend that if
you are using a dynamic routing protocol, then define them with subnet masks, to avoid
having unexpected route entries appear.
Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs 27

Failure modes
We wanted to verify that keepalived and the VRRP protocol would achieve the desired effect.
We tested by running the ping program from one Linux guest to an address on the other side
of the router, using the VRIP address as the gateway address.

The obvious failures (killing the keepalived daemon, FORCEing the router guest off VM,
destroying the simulated NIC) all were handled as expected, with a backup VRRP instance
taking over the master role and the traffic continuing on with only a dropped packet or two
between the failure and the state transition.

However, a couple of failure modes we tested exhibited unexpected results, and we discuss
them here.

Configuring an interface down
We tested using the ifdown command to bring down an interface with a VRRP instance
running over it, to see the effect on the VRRP operation.

We found that the expected VRRP state transition occurs when the interface was brought
down. When the interface was brought back up, however, the VRRP multicast address was
not reregistered and VRRP failed.

This situation would be most disruptive when the instance that rejoins the virtual router is
lower priority than the current master. When the new instance starts, the master down interval
will pass without it receiving any messages from the master. This will cause it to attempt to
transition to master, which will fail because the current master has already registered the
VRIP. It will then start sending advertisements, which the current master will receive, process,
and ignore (because they come from a lower priority instance).

It is unlikely that an outage would result from this, unless the current master then failed and
there were no more backups (or the other backups were lower priority than the “failed”
backup). Because the broken instance already thinks it is in master state, it will not attempt to
reregister the VRIP. Even if there are other backups of lower priority, they will receive the
advertisements from the broken instance and believe that it is handling the VRIP.

We noticed that the change list on the latest version of the Linux OCO modules included
reference to a bug in multicast group membership registration. We verified that we were
running the latest version of the OCO drivers, but still experienced the failure.

Later, our system was maintained and the fix for VM APAR VM63172 was applied. We
performed this test again, and this time found that the multicast memberships were correctly
reregistered after the interface was configured back up. So, it would appear that the fix
included in the qeth module is dependent upon a corresponding fix in the z/VM Guest LAN
code made available with the PTF for APAR VM63172.

“Unplugging” a simulated NIC
When a simulated NIC is detached from a Guest LAN but not destroyed, the Guest LAN code
represents this to the QETH driver as a cable pull event2. The NIC can no longer pass traffic,

Note: If a VRRP instance is operating without having registered the VRRP multicast
address, it will not receive any advertisements sent by other VRRP instances.

Exercise: keepalived also provides a heartbeat facility. It would be interesting to see if it
could be configured to monitor the VRIP, thus becoming a self-monitoring program!
28 Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs

so if this is done to a NIC carrying a VRRP instance in master state, the backups will no
longer receive any advertisements and an election will occur.

Linux still believes the interface is up, so keepalived will attempt to transition the instance to
master because no advertisements are being received. Because the “cable is unplugged”,
however, it does not matter if that instance attempts to become master again, because any
advertisements it sends will not reach the network.

The problem with this situation occurs when sync grouping is used. When the NIC is first
detached, a backup wins the resulting election and transitions to master. Now, because of
sync grouping, the other interface on this router transitions to master also. The
advertisements it sends are received by the still-attached interface on the first router, which
will start to transition back to master because the multicast it has received from the second
router is lower priority. The second router returns to backup state, but again does not receive
advertisements from the first router due to the detached NIC. The cycle continues until the
NIC on the first router is reattached.

Note that the same problem will still occur if the NIC is detached on a backup VRRP instance;
it will attempt to transition to master when it no longer receives advertisements over the
detached NIC.

If detaching NICs is something you are likely to do in your environment, take care when using
sync grouping. To prevent this situation, shut down keepalived on the router that uses the NIC
you wish to detach. If the router is a master, a backup will transition cleanly to master. If the
router is a backup, it will no longer be participating in the virtual routers and will not mistakenly
attempt to transition to master.

AH troubleshooting
We tested the use of stronger authentication through the use of keepalived’s Authentication
Header (AH) support.

Starting the keepalived processes on our two test router guests resulted in normal operation
of the VRRP virtual routers. As expected, the additional data payload resulted in slightly more
traffic over the network, as shown in Figure 11 on page 31.

On a couple of occasions, however, after the restart of one (sometimes both) of the
keepalived processes, keepalived would fail to synchronize the AH sequence numbers. This
would result in a massive amount of network traffic being generated, as both the router guests
started flooding advertisements with unsynchronized AH sequence numbers into the network.

It would appear that the AH implementation in keepalived needs some more work. For the
time being, we would recommend using PASS authentication in keepalived, and using other
means to protect the virtual routers from bogus advertisements.

2 A fairly interesting, but quite logical, thing to do.

Note: AH is an IP standard, defined in RFC2402, that adds additional header information
to IP packets. This additional header provides protection against the alteration and replay
of packets, which is particularly useful in VRRP because TCP connections are not used.

Tip: The Keepalived Project has written a paper to the IETF on their AH implementation.
This would be an ideal place to start to find out more about how keepalived implements
AH, and how this synchronization issue might be addressed. The paper is available from
the keepalived project home page.
Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs 29

VRRP details
In this section, we outline some of the detail involved in VRRP implementations.

VRRP timing
There are two critical time intervals in VRRP: the advertisement interval and the master down
interval.

Advertisement interval
The advertisement interval is the length of time between the advertisement packets sent by
the master VRRP instance. By default this is one second, but it is configurable.

The value chosen for the advertisement interval is a compromise between the amount of
network traffic generated (and the amount of CPU used by router images and Guest LANs)
and the possible downtime incurred through router failure. See “Choosing your advertisement
interval” on page 30 for more information on this.

Master down Interval
The master down interval is the length of time that a backup VRRP instance will wait for an
advertisement before attempting to transition to the master state. The VRRP RFC defines the
master down interval as equal to three times the advertisement interval plus the skew time,
which means it cannot be set by itself but is instead derived from the advertisement interval
and the priority value.

Skew time
The VRRP RFC defines a value called the skew time. This value is calculated as follows:

The result is a value, in seconds, which gets smaller as priority becomes larger. This value
helps avoid race conditions between backup VRRP routers, as described in the following
section.

Choosing your advertisement interval
When building your VRRP configuration, it is very important to ensure that a balance is
reached between system overhead and backup capability. Figure 11 on page 31 shows an
MRTG graph of the traffic placed on a HiperSockets network by two VRRP routers each
supporting two VRRP instances (a configuration shown in Figure 5 on page 18).

256

256 priority
skewtime

−
=

30 Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs

Figure 11 MRTG graph of traffic load

In this configuration, we used the default advertisement interval of one second. If the
advertisement interval were increased to two seconds, not only would the amount of network
traffic be halved, but the amount of CPU used by the Linux guests and the Guest LAN code
would also be reduced.

Increasing the advertisement interval, however, will have a corresponding effect on the ability
of your backup VRRP instances to respond to the failure of the master. Because the master
down interval is calculated by multiplying the advertisement interval by three (and adding the
skew time), doubling the advertisement interval will double the master down interval. So,
instead of taking roughly three seconds to respond to failure of the master, with an
advertisement interval of two seconds it would now take more than six seconds for a backup
to take over master state.

If your installation can accept a routing infrastructure that is less reactive to outage,
increasing the advertisement interval is the best way to reduce the overhead of VRRP.

Avoiding state transition race conditions
The addition of the skew time value into the master down interval helps the protocol avoid a
situation where a number of backup VRRP routers attempt to transition to master state at the
same time due to the failure of the previous master.

When a VRRP instance is in backup state, its operation is controlled by the arrival of
advertisements from the master. The arrival of an advertisement resets the master down
timer, a timer that the backup uses to determine if the master is still functioning. The master
down timer pops at the end of the master down interval (see “Master down Interval” on
page 30), and when this timer pops, the backup knows that there is a problem with the master
and it commences a transition to master.

A race condition could arise as a result of all backups being “clocked” by the same
advertisement from the master. When the master down timer pops, it would pop at the same
time on all the VRRP instances that are part of that VRID. This means that all the backups

Note: The increase in the amount of traffic at approximately 2:30 pm shown on this graph
resulted from a change in authentication method from PASS to AH. If you are considering
using AH, you may wish to take this increase in traffic into account.
Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs 31

would attempt to transition to master simultaneously, resulting in a flood of advertisements
onto the network containing conflicting information. The condition would eventually settle
down as the VRRP instances used priority values and IP interface addresses to decide the
new master, but the confusion might have led to extended outage time, extra CPU usage,
and extra network traffic generated.

Using skew time
The designers of VRRP had to ensure that the backup VRRP instances did not attempt to
transition to master at the same time. In addition, they wanted to ensure that a higher priority
instance was more likely to transition to master than a lower priority instance. The mechanism
they arrived at introduced a value known as skew time, described in “Skew time” on page 30.

The skew time value is used as part of the calculation of the master down interval. The
amount of skew time decreases as the priority increases. This means that a lower priority
router will have a longer master down interval, and so will wait longer for an advertisement to
arrive. The longer a low priority router waits, the more likely a higher priority router will
transition to master state ahead of it (since its skew time will be shorter).

For this reason, it is important that priority values between VRRP instances are largely
different. A difference of 240 between priority values (one router with priority 250 and another
with priority 10) will yield a difference in skew times of 938 milliseconds. This means that the
high-priority router will have made transition to the master state almost a full second before
the low priority router would attempt to. However, if one router was priority 250 and the other
was priority 249 (for example), the higher-priority router would transition to master state only
4 milliseconds before the lower priority router. This could well give rise to a race condition.

Ownership
We mentioned in “Basic VRRP configuration” on page 14 that it is possible for the configured
interface address of one of the routers running a VRRP instance to be the same as the VRIP.
When this occurs, that VRRP instance is called the owner of the VRIP. When this is the case,
VRRP dictates that as long as the VRRP instance is running, that instance must be master for
that VRID and its priority must be set to 255.

There are issues with this type of configuration, however; it complicates management of the
router, and potentially could cause unexpected downtime.

Connectivity to VRIP owner
If the VRIP is used as a destination address for connecting to the router, unpredictable results
will occur if a state transition happens during the session. The connection will either fail (if a
TCP application, such as SSH), or else unexpected errors or bad data will result (for
UDP-based applications such as SNMP, or for TCP applications that use many short
sessions, such as HTTP). If the owner is down, management applications will be accessing
one of the backup routers without providing any awareness that they are not accessing the
intended router.

Note: A very thorough explanation of skew time deltas and other issues is given in VRRP:
Increasing Reliability and Failover with the Virtual Router Redundancy Protocol.

Note: Both restrictions mentioned here are peculiar to the current Linux implementations
of VRRP. The different capabilities of router hardware (and the software that operates it)
allow for more direct control of network data frames, making router-based VRRP
implementations more “accurate” in terms of the RFC.
32 Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs

Restart after failure
If a backup VRRP instance has taken up the master state after the failure of the owner, all is
working normally. When the owner restarts, however, it will not be able to set its IP address
because the backup has configured it. The owner’s IP stack will not permit the configuration of
a duplicate IP address. This could require manual intervention (and a brief outage) to resolve;
the resolution could be difficult too, because the router will be inaccessible from the network
since its IP address could not be configured.

References

ITSO publications
� Linux on IBM ^ zSeries and S/390: Large Scale Linux Deployment, SG24-6824

http://www.ibm.com/redbooks/abstracts/sg246824.html

� Linux on IBM ^ zSeries and S/390: TCP/IP broadcast on z/VM Guest LAN,
REDP3596

http://www.ibm.com/redbooks/abstracts/redp3596.html

Other resources
� VRRP: Increasing Reliability and Failover with the Virtual Router Redundancy Protocol,

Ayikudy Srikanth and Adnan Adam Onart, Addison-Wesley, 2003, ISBN 0-201-71500-7

Referenced Web sites
� Virtual Router Redundancy Protocol RFC

http://www.faqs.org/rfcs/rfc2338.html

� The VVRPd home page

http://off.net/~jme/vrrpd/index.html

� Alexandre Cassen’s software patches

http://linuxvirtualserver.org/~acassen/

� The keepalived home page

http://keepalived.sourceforge.net

About the author
Vic Cross is the Linux for zSeries and S/390 Team Leader at Independent Systems
Integrators, IBM’s Large Systems Business Partner in Australia. He has more than 15 years
of experience in general computing, seven of which has been spent working on S/390 and
zSeries. He holds a Bachelor of Computing Science degree from Queensland University of
Technology. His areas of expertise include networking and Linux.

He is a co-author of IBM Redbooks™ and Redpapers Linux on IBM ^ zSeries and
S/390: ISP/ASP Solutions, SG24-6299, Linux on IBM ^ zSeries and S/390: Large
Scale Linux Deployment, SG24-6824, and Linux on IBM ^ zSeries and S/390: Porting
LEAF to Linux on zSeries, REDP3627.
Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs 33

http://keepalived.sourceforge.net
http://www.utsglobal.com/linuxprod.html
http://www.ibm.com/redbooks/abstracts/sg246824.html
http://www.ibm.com/redbooks/abstracts/sg246824.html
http://www.ibm.com/redbooks/abstracts/redp3596.html
http://www.faqs.org/rfcs/rfc2338.html
http://off.net/~jme/vrrpd/index.html
http://linuxvirtualserver.org/~acassen/

Thanks to the following people for their contributions to this project:

� Greg Geiselhart, ITSO Poughkeepsie

� Mike Brady of devnull.net.nz for technical assistance

� The administrators and members of the Linux-390 mailing list
34 Linux on IBM ^ zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2003. All rights reserved. 35

This document created or updated on June 10, 2003.

Send us your comments in one of the following ways:
� Use the online Contact us review redbook form found at:

ibm.com/redbooks
� Send your comments in an Internet note to:

redbook@us.ibm.com
� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400 U.S.A.

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

™
Redbooks™
Redbooks(logo) ™

IBM®
S/390®
z/OS™

z/VM™
zSeries™

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

®

36 Linux on IBM ̂zSeries and S/390: Virtual Router Redundancy Protocol Implementation on VM Guest LAN

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

	Linux on IBM zSeries and S/390: Virtual Router Redundancy Protocol on VM Guest LANs
	Overview
	About VRRP
	VRRP terminology
	VRRP in action
	VRRP in a Linux on zSeries™ network

	Linux VRRP implementations
	Early VRRP implementations
	Keepalived

	Building and installing keepalived
	Dependencies
	Building keepalived
	Running keepalived

	VRRP on Guest LANs using keepalived
	Simple environment without VRRP
	Basic VRRP configuration
	Load sharing with VRRP
	Using VRRP instead of dynamic routing

	VRRP experiences on Guest LANs
	Virtual MAC address
	Interaction with Zebra
	Failure modes

	VRRP details
	VRRP timing
	Avoiding state transition race conditions
	Ownership

	References
	ITSO publications
	Other resources
	Referenced Web sites

	About the author

	Notices
	Trademarks

